Development of novel measures of welfare in juvenile European starlings exposed to nutritional stress
Grantee: Melissa Bateson
Institution: Newcastle University, United Kingdom
Grant amount: $60,000
Grant type: Challenge grants
Focal species: Starlings (Sturnidae sp.)
Conservation status: Least concern
Disciplines: Physiology, ornithology
Research location: United Kingdom
Project summary
Juveniles of passerine species such as the European starling (Sturnus vulgaris) experience massive mortality, much of which is caused by direct or indirect effects of nutritional stress. Of birds that survive, many will bear the “scars” of early-life stress that have consequences for their welfare. The aim of this project is to identify the metabolic “fingerprint” of nutritional stress in starling nestlings and to validate sensitive and non-invasive molecular biomarkers that can be used to assess the welfare of wild starlings.
This group has been developing the hypothesis that biomarkers of biological age not only predict future morbidity and mortality, but also reflect the quality of an animal’s cumulative lifetime experience. Existing metrics of biological age, particularly telomere length, require invasive blood samples, and measurements are imprecise, meaning that large sample sizes are currently required to obtain significant effects in epidemiological studies. Estimating biological age based on measuring multiple age-related biomarkers (as is typical in the human aging literature) is likely to be more reliable than using telomere length alone.
This project will use untargeted metabolomics to identify multiple novel biomarkers of exposure to nutritional stress in nestling starlings. This “fingerprint” will be validated by testing whether it predicts gold-standard behavioral measures of adult affective experience in a cohort of laboratory-raised birds. Metabolomics measures thousands of small molecules in one biological sample and can be performed on a range of tissues including blood, hair, and urine. The aim will be to identify an applicable panel of metabolites that can be measured cheaply and easily from feathers and the uric acid component of guano.
Why we funded this project
This project should introduce a novel indicator of long-term welfare that is less invasive, requires fewer resources, and is potentially more reliable than similar existing methods. The PI is a world leader in the field of animal behavior and is the main originator of using biological aging to understand long-term animal welfare, especially in non-model species. For that reason, we are especially confident in this work being high-quality and having great academic reach and influence.