Meet our grantees
Wild Animal Initiative funds academic research on high-priority questions in wild animal welfare.
The goal of our grants program is to fund research that deepens scientific knowledge of the welfare of wild animals in order to better understand how to improve the welfare of as many wild animals as possible, regardless of what causes the threats to their well-being.
We showcase our grantees and their projects here and will be adding more in the coming weeks and months.
The impact of road noise on the welfare of free-living juvenile white-footed mice
Grantee: Michael Sheriff
Institution: University of Massachusetts Dartmouth
Project summary
This project will examine how road noise impacts the ability of juvenile white-footed mice in Massachusetts to respond to the threat of predation. Preliminary work has shown that experimental manipulation of road noise disrupts the foraging responses of (adult) small mammals to predation risk, possibly by masking their ability to perceive predators’ auditory cues. Perception of predation threat will be experimentally manipulated by auditory playback of owl noises at sites near and far from the highway, paired with controls at the same distances from the highway without auditory playback. Anxiety-related behaviors will be recorded in juveniles in an open field trap, and their feces will be studied to assess physiological stress and nutritional status.
Grantee: Michael Sheriff
Institution: University of Massachusetts Dartmouth, United States
Grant amount: $60,000
Grant type: Challenge grants
Focal species: White-footed mice (Peromyscus leucopus)
Conservation status: Least concern
Disciplines: Human-wildlife conflict, animal behavior, population ecology, mammalogy
Research location: United States
Project summary
This project will examine the impact of road noise on juvenile welfare in white-footed mice in Massachusetts. The project will focus on how road noise impacts the ability of juveniles to respond appropriately to the threat of predation (the most common cause of juvenile small mammal mortality). Preliminary work has shown that experimental manipulation of road noise (played at 62-65dB, which is equivalent to 100m into the forest from a major thoroughfare to Boston, MA) disrupts the normal foraging responses of (adult) small mammals to predation risk, possibly by masking their ability to perceive auditory cues of predators. Perception of predation threat will be experimentally manipulated by auditory playback of owl noises at sites near and far from the highway, paired with controls at the same distances from the highway but without auditory playback. Anxiety-related behaviors will be recorded in juveniles in an open field trap (which they voluntarily enter for feed), and their feces will be studied to assess physiological stress and nutritional status.
Why we funded this project
Road noise has dramatically increased and is potentially a major anthropogenic threat to wild animal welfare, and one which might be easily ameliorated through policy changes (e.g., improved sound barriers). This project is especially interesting because it focuses on a less obvious effect of road noise, potentially increasing the risk of predation by masking predator cues. This becomes even more interesting in the context of growing literature on the “ecology of fear,” sublethal effects of predators on prey behavior. If road noise makes prey unaware of risks, it could actually reduce their chronic stress despite exposing them to greater risk of death. We are excited for this project to explore those issues, although we are prepared for a complex result. Additionally, we wanted to support this PI because of their strong record of engaging students in their research and influencing their career trajectories.
Photos
The impact of anthropogenic stressors on the affective state of juvenile Murray cod
Grantee: Rafael Freire
Institution: Charles Sturt University
Project summary
Many freshwater fish populations have severely declined as a result of human-caused changes in their environment. Population decline often results from an increased mortality rate experienced on the individual level, with likely implications for the welfare of individuals living through a period of population decline. This study will examine how differences in water quality and the presence of potential predators affect a behavioral indicator of welfare — judgment bias — in juvenile Murray cod (Maccullochella peelii). In the future, data about how juvenile fish respond to these factors could guide interventions for helping juvenile fish survive to adulthood in the wild.
Grantee: Rafael Freire
Institution: Charles Sturt University, Australia
Grant amount: $21,500
Grant type: Challenge grants
Focal species: Murray cod (Maccullochella peelii)
Conservation status: Critically endangered
Disciplines: Animal behavior, sentience, ichthyology
Research location: Australia
Publications
Freire, R. and Nicole, C.J. (2024). A novel method to measure the impact of water quality on judgement bias in wild juvenile fish. Global Ecology and Conservation, 54. https://doi.org/10.1016/j.gecco.2024.e03086
Project summary
Many freshwater fish populations have severely declined as a result of human-caused changes in their environment. Population decline often results from an increased mortality rate experienced on the individual level, with likely implications for the welfare of individuals living through a period of population decline. This study will examine how differences in water quality and the presence of potential predators affect a behavioral indicator of welfare — judgment bias — in juvenile Murray cod (Maccullochella peelii). In the future, data about how juvenile fish respond to these factors could guide interventions for helping juvenile fish survive to adulthood in the wild.
Why we funded this project
The vast majority of wild fish do not survive to adulthood, but little is known about their welfare as juveniles and how that might affect their survival. This project will address that by investigating the effects of multiple aspects of habitat quality on the affective state of juvenile Murray cod. An additional factor in us funding this project was that it would be integrated into ongoing fisheries policy work by the PI, which should ultimately lead to advice for the regional government.
Photos
Density-Dependent Welfare in Wild Bird Social Networks: Linking resource distributions with disease dynamics
Grantee: Joshua Firth
Institution: University of Oxford
Project summary
This project will investigate how various potential density-dependent drivers of welfare interact and influence net welfare in two species of tit. Population density is expected to be directly related to infectious disease transfer and increased competition, but also to covary with processes that are potentially beneficial to welfare. The study will use historical data to determine how the relationship between population density and individual welfare is shaped by infectious disease, body condition, and mortality risk. The investigators will then manipulate density experimentally to test model outputs and determine potential causal links.
Grantee: Josh Firth
Institution: University of Oxford, United Kingdom
Grant amount: $99,466
Grant type: Challenge grants
Focal species: Great tits (Parus major), blue tits (Cyanistes caeruleus)
Conservation status: Least concern
Disciplines: Animal behavior, community ecology, infectious disease, population ecology, ornithology, bio/eco-informatics, ecological modeling, animal welfare science
Research location: United Kingdom
Project summary
This project seeks to understand the interplay among various potential density-dependent drivers of positive and negative welfare impacts to determine net welfare related to aggregation (increased density) in wild birds (two species of tit). Infectious disease transfer and increased competition, both likely to reduce welfare, are expected to be directly related to population density. However, population density also covaries with processes that are potentially beneficial to welfare, such as congregation around areas that provide high nutrition, various social benefits, opportunities for increased cooperation, or access to social information. The study will use long-term datasets to empirically determine how the relationship between population density and individual welfare is shaped by infectious disease, including the density-dependent relationship with disease spread. Additionally, using historical data, the project will test how population density, mediated by social contact, environment, and disease, determines individuals’ body condition and mortality risk. Based on the results of this observational phase of the study, the investigators will then manipulate density experimentally, to test model outputs and determine potential causal links.
Why we funded this project
This project brings two unique advantages. First, the investigators have access to a population that has been subject to intensive monitoring for decades, meaning that much of the relevant ecological context is known and there is historical data to analyze retrospectively. Secondly, in part due to this long-term monitoring, the birds are tagged and observed at feeding stations equipped with RFID tags/readers that allow for experimental manipulation of the density and identity of birds feeding at particular stations. By empirically testing density-dependent models of welfare, the project could provide an increased understanding of the interplay among population density, infectious disease, and various social and environmental characteristics, and in doing so, identify drivers of welfare in wild birds.
Photos
Improving the welfare of farmland invertebrates
Grantee: Dr. Ruth Feber
Institution: University of Oxford
Project summary
In Lepidoptera (butterflies and moths), larvae are much more abundant and less mobile than adults. Larvae are therefore particularly vulnerable to negative stimuli, including starvation and disease. This project will use lepidopteran larvae as a model for auditing the welfare impact of agricultural activities on invertebrates. Juvenile stages of Lepidoptera are exposed to agricultural practices that have the potential to affect their welfare. To quantify these impacts, the study will extend the Quality Adjusted Life Year (QALY) methodology to take into account the number of individuals affected by a specified action.
Grantee: Dr. Ruth Feber
Institution: Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Department of Zoology, University of Oxford, United Kingdom
Grant amount: $58,448
Grant type: Challenge grant
Focal species: Butterflies (Rhopalocera sp.)
Conservation status: Near threatened
Disciplines: Entomology, population ecology, physiology
Research location: United Kingdom
Project summary
Invertebrates, particularly insects, often have complex life histories. Juveniles (which make up the overwhelming majority of invertebrate numbers) may experience a range of different life quality outcomes. In Lepidoptera (butterflies and moths), for example, adults are the most visible stage, but the much more abundant larvae are less mobile than adults and are particularly vulnerable to negative stimuli including starvation and disease.
This project will use lepidopteran larvae as a model for auditing the welfare impact of agricultural activities on invertebrates. Juvenile stages of Lepidoptera tend to comprise the largest proportion of the total lifespan in temperate regions and, as juveniles, they are exposed to a wide range of agricultural practices that have the potential to affect their welfare. Lepidoptera are also among the better-studied invertebrates, with published data on the ecology, life histories, and survivorship of some species. This knowledge will be used to help inform welfare impact assessments.
The study will adapt the Quality Adjusted Life Year (QALY) methodology to quantify the welfare impacts of agriculture, which has recently been adapted by Teng et al. (2018) to compare the impact of diseases of domestic animals with a Welfare Adjusted Life Year (WALY). This project aims to extend the QALY to take into account the number of individuals affected by a specified action.
Why we funded this project
Farms take up nearly half of the world’s habitable land, but there is a lack of research into how agricultural management practices might impact wild animals, especially invertebrates. In order to improve welfare for invertebrates, we first need to understand how to measure welfare. This project will explore a model to quantify wild insect health and well-being. We were especially attracted to this project because it will repurpose existing data, allowing the research objectives to be accomplished more cheaply and with less animal suffering than might otherwise be required. We were also excited by the PI’s interest in quantifying welfare using a QALY-like framework, which fits perfectly with our utilitarian approach and could lead to actionable policy recommendations.
Photos
Does population density influence the welfare of wild newts?
Grantee: Luiza Figueiredo Passos
Institution: Liverpool John Moores University
Project summary
This project will explore how the welfare of the widespread great crested newt (Triturus cristatus) is influenced by population density. It will test the hypothesis that optimal conditions for population sustainability could be suboptimal at the individual level, and consequently negative for welfare. The researchers will study the welfare of newts in populations with varying densities throughout England. Welfare will be assessed using the Five Domains Model by collecting measures of health, behavior, and nutrition. Environmental parameters will also be collected to assess the relationship between habitat quality and welfare.
Grantee: Luiza Figueiredo Passos
Institution: Liverpool John Moores University, United Kingdom
Grant amount: $158,060
Grant type: Challenge grants
Focal species: Great crested newt (Triturus cristatus)
Conservation status: Least concern
Disciplines: Physiology, animal behavior, herpetology
Research location: United Kingdom
Project summary
The project seeks to determine how the welfare of the widespread species of great crested newts, Triturus cristatus, is influenced by population density in order to help determine how management practices can foster the welfare of individuals. Based on previous studies that have shown that population size and density correlate negatively with body condition and adult survivorship, this study will test the hypothesis that optimal conditions for population sustainability (i.e., conditions that result in higher juvenile survival) could be suboptimal at the individual level, and consequently negative for welfare. The project will study the welfare of newts in populations with varying densities at different locations in England. Welfare will be assessed using the Five Domains model of animal welfare by collecting measures of health (presence of injuries or diseases, corticosterone level, and telomere attrition), behavior (expression of abnormal behavior, flight response, behavioral restriction), and nutrition (body condition, food availability). Environmental parameters (water quality, shelter availability, predator pressure, proximity to anthropogenic threats) will also be collected to assess the relationship between habitat quality and welfare.
Why we funded this project
We funded this project because it will assess density-dependent welfare using a diverse battery of indicators. It is especially exciting to see them applied to a highly abundant amphibian, as the overwhelming majority of wild animal welfare projects have focused on mammals or birds. The proposing team is also very well qualified and has previously been funded by Wild Animal Initiative, which makes them well-suited to take on an analytically challenging project to disentangle influences of population density on newt welfare.
Find Luiza’s other project, studying house sparrows, here.