Meet our grantees
Wild Animal Initiative funds academic research on high-priority questions in wild animal welfare.
The goal of our grants program is to fund research that deepens scientific knowledge of the welfare of wild animals in order to better understand how to improve the welfare of as many wild animals as possible, regardless of what causes the threats to their well-being.
We showcase our grantees and their projects here and will be adding more in the coming weeks and months.
Integrating behavioral competency and post-release support for reintroduced wildlife: a shift in paradigm for rehabilitation and beyond
Grantee: Karli Rice Chudeau
Institutions: The Marine Mammal Center, University of California, Davis
Project summary
This project investigates post-release support and monitoring to improve outcomes for rehabilitated juvenile pinnipeds. Post-release support will include familiar cognitive enrichment to help released animals adjust gradually and buffer their affective state. Post-release monitoring will consider metrics such as behavioral diversity, energy expenditure, and body condition, and the animals’ specific behavioral profiles will be compared with those recorded from healthy, wild individuals. These metrics will be used to evaluate the effectiveness of post-release enrichment as an intervention for improving welfare outcomes. Cognitive bias tests for affective state carried out during rehabilitation and prior to release will also be considered as potential predictors of post-release welfare.
Grantee: Karli Rice Chudeau
Institutions: The Marine Mammal Center, University of California, Davis, United States
Grant amount: $30,000
Grant type: Seed grants
Focal species: Northern elephant seal (Mirounga angustirostris), eastern Pacific harbor seal (Phoca vitulina richardii)
Conservation status: Least concern
Disciplines: Wildlife rehabilitation, animal behavior, animal welfare science
Research location: United States
Project summary
In many cases, the process of releasing a rehabilitated or translocated animal can be traumatic and removes the animal’s agency, potentially weakening their ability to thrive in the wild. This project investigates post-release support and monitoring to improve outcomes for rehabilitated juvenile pinnipeds. Post-release support will include familiar cognitive enrichment to help released animals adjust gradually and buffer their affective state. Post-release monitoring will consider metrics such as behavioral diversity, energy expenditure (distance traveled), and body condition, and the animals’ specific behavioral profiles (e.g. foraging behavior) will be compared with those recorded from healthy, wild individuals. These metrics will be used to evaluate the effectiveness of post-release enrichment as an intervention for improving welfare outcomes. Cognitive bias tests for affective state carried out during rehabilitation and prior to release will also be considered as potential predictors of post-release welfare.
Why we funded this project
We envision a world in which people take responsibility for improving wild animals’ lives and have the knowledge they need to do so effectively. Rehabilitation is a part of that. However, there has been relatively little research on post-release outcomes for rehabilitated animals. Understanding those outcomes and identifying strategies to improve them could have significant welfare implications, especially for the treatment of juvenile animals, whose life trajectories may be powerfully affected by the rehabilitation and release process. We appreciate that this project combines post-release monitoring with both a specific intervention and pre-release tests of affective state that would not be possible in a wild context.
Improving the welfare of wild and captive animals with integrated in-situ and ex-situ behavioural monitoring
Grantee: Sarah Richdon
Institutions: Bristol Zoological Society
Project summary
This project will investigate the welfare impacts of translocating captive-bred white-clawed crayfish (Austropotamobius pallipes) into an existing wild population. Both resident and introduced individuals will be fitted with transponders and marked for behavioral monitoring. To evaluate welfare, the researchers will observe social interactions (e.g. aggressive interactions), behavioral diversity, and the animals’ use of their habitat. For example, emigration of native individuals from the focal habitat may be indicative of intraspecific competition intensified by the translocation. Body condition will also be scored as a metric of health and resource access.
Grantee: Sarah Richdon
Institutions: Bristol Zoological Society, United Kingdom
Grant amount: $30,000
Grant type: Seed grants
Focal species: White clawed crayfish (Austropotamobius pallipes)
Conservation status: Endangered
Disciplines: Animal welfare science, marine biology
Research location: United Kingdom
Project summary
This project will investigate the welfare impacts of translocating captive-bred white-clawed crayfish (Austropotamobius pallipes) into an existing wild population. Both resident and introduced individuals will be fitted with transponders and marked for behavioral monitoring. To evaluate welfare, the researchers will observe social interactions (e.g. aggressive interactions), behavioral diversity, and the animals’ use of their habitat. For example, emigration of native individuals from the focal habitat may be indicative of intraspecific competition intensified by the translocation. Body condition will also be scored as a metric of health and resource access.
Why we funded this project
We are excited to fund a project focused on the welfare of invertebrates, in this case an aquatic crustacean. The monitoring methods and some findings of this project may also be applicable to other aquatic taxa. Translocation is already a commonly used intervention in conservation, yet its welfare implications are poorly understood. By learning about these, translocation strategies could potentially be improved, and we might gain insights that could be applied to other welfare-motivated interventions.
Predicting density dependence of welfare of wild animal populations based on resource access linked to habitat availability and usage
Grantee: Ross MacLeod
Institutions: Liverpool John Moores University
Project summary
This project seeks to adapt a habitat and population model to incorporate welfare and apply it to the study of an abundant and widespread avian species, the house sparrow (Passer domesticus). The researchers propose to utilize a variety of welfare metrics to validate model assumptions, which will then allow them to test assumptions related to the welfare implications of density-dependent population dynamics.
Grantee: Ross MacLeod
Institutions: Liverpool John Moores University, United Kingdom
Grant amount: $159,744
Grant type: Challenge grants
Focal species: House sparrow (Passer domesticus)
Conservation status: Least concern
Disciplines: Ecological modeling, population ecology, animal welfare science
Research location: United Kingdom
Project summary
This project seeks to adapt a habitat and population model to incorporate welfare and apply it to the study of an abundant and widespread avian species, the house sparrow (Passer domesticus). The researchers propose to utilize a variety of welfare metrics to validate model assumptions, which will then allow them to test assumptions related to the welfare implications of density-dependent population dynamics.
Why we funded this project
We funded this project because it addresses our proposal request very closely and proposes to investigate a key wild animal welfare question using a modeling framework. They are also planning to address their question using an abundant avian species. The project has high potential to inform future work focused on modeling total welfare in a population (i.e., combining both individual welfare and population size), and to create a model that can be replicated in other systems.
Find Ross’ other project, studying wild birds, here.
Photos
Empirical assessment of welfare in wild American mink and Eurasian otters: the effects of intra- and inter-specific population density
Grantees: Lauren A Harrington, Maria Diez Leon
Institutions: Oxford University
Project summary
This project seeks to determine whether the welfare of American mink is negatively impacted in the presence of high densities of Eurasian otters, whether both species’ welfare is compromised at relatively higher densities of conspecifics, and whether there is a seasonality to welfare impacts. The project will also assess whether behavioral time budget shifts in mink are associated with higher chronic stress levels as a proxy for negative impact on mink welfare. These questions will be addressed by measuring welfare through several different domains, including behavioral (exploratory behavior, vocalizations), physical (body condition, ectoparasite load), and physiological (telomere length, fecal glucocorticoid metabolites and hair cortisol) metrics.
Grantees: Lauren A. Harrington, Maria Diez Leon
Institutions: Oxford University, United Kingdom
Grant amount: $162,257
Grant type: Challenge grants
Focal species: American mink (Neovison vison), Eurasian otter (Lutra lutra)
Conservation status: Near threatened
Disciplines: Animal welfare science, community ecology, wildlife management
Research location: United Kingdom
Project summary
This project seeks to determine whether the welfare of American mink (Neovison vison) is negatively impacted in the presence of high densities of Eurasian otters (Lutra lutra), whether both species’ welfare is compromised at relatively higher densities of conspecifics, and whether there is a seasonality to welfare impacts. The project will also assess whether behavioral time budget shifts in mink are associated with higher chronic stress levels, as a proxy for negative impact on mink welfare. These questions will be addressed by measuring welfare through several different domains, including behavioral (exploratory behavior, vocalizations), physical (body condition, ectoparasite load), and physiological (telomere length, fecal glucocorticoid metabolites and hair cortisol) metrics.
Why we funded this project
This project has the potential to contribute significant information to the understanding of intra-specific density-dependent welfare and to the understanding of network effects among predator-prey and competitor interactions of wild animals. Its unusually diverse set of welfare metrics will allow for cross-validation, strengthening both this project and other projects applying the same metrics. The investigators each have a strong background in animal welfare and have made efforts to better align their work with Wild Animal Initiative’s priorities for wild animal welfare, which makes them good candidates to carry forward the validation of these welfare indicators (particularly telomere attrition, which is still relatively immature in its use as a welfare indicator).
Find Maria’s other project, studying European minks, here.
Photos
Social connections and their welfare implications in the wild
Grantee: Alex Thornton
Institutions: University of Exeter, University of Bristol
Project summary
This project seeks to understand the relationship between welfare and social interactions in wild bird populations. Using historical data, the researchers will also seek insight into how welfare varies among individuals in relation to the social system, early-life experiences, and interactions among individuals. They will also investigate whether social systems might play a role in helping to mitigate some of the negative anthropogenic impacts on welfare.
Grantee: Alex Thornton
Institutions: University of Exeter, University of Bristol, United Kingdom
Grant amount: $157,962
Grant type: Challenge grants
Focal species: Jackdaws (Coloeus sp.)
Conservation status: Least concern
Disciplines: Animal behavior, ornithology, animal welfare science
Research location: United Kingdom
Project summary
This project seeks to understand the relationship between welfare and social interactions in wild bird populations. Using historical data, the researchers will also seek insight into how welfare varies among individuals in relation to the social system, early-life experiences, and interactions among individuals. They will also investigate whether social systems might play a role in helping to mitigate some of the negative anthropogenic impacts on welfare.
Why we funded this project
The study findings will help in understanding how wild animals cope with increasing temperatures and the impact of thermal stress on their welfare and health. Notably, previous work has suggested that T3 measurements in ungulates are especially sensitive to thermal stress, and so comparing T3 with other indicators based on different physiological pathways, such as glucocorticoids, could help researchers to diagnose the relative significance of different environmental stressors an animal is facing. The project’s behavioral metrics are also crucial for realizing that potential. A secondary reason for our interest in this project is that it has near-term policy implications, potentially highlighting the value of preserving or promoting specific landscape features for the ecosystem service they offer, in the form of shade, to wild ungulates.
Photos
Determination of Fecal Tri-iodothyronine and Cortisol as Physiological Proxies of Animal Welfare
Grantees: Michael Cherry, Joe Hediger
Institutions: Caesar Kleberg Wildlife Research Institute, Texas A&M University, University of Massachusetts Dartmouth
Project summary
Wild animals are susceptible to the effects of thermal stress imposed by a warming climate, including increased energetic costs to maintain a healthy body temperature, immune system impairment, changes in food availability, and increases in disease transmission. White-tailed deer in southern Texas are on the front lines of this challenge. This project aims to assess the reliability of fecal tri-iodothyronine (T3) and fecal glucocorticoids (FGC) as non-invasive physiological metrics for monitoring their health. The use of T3 as an indicator of wildlife health and welfare is relatively novel, and the researchers will attempt to refine it through controlled experiments, correlating the T3 measurements with a more widely used indicator in FGC. Both physiological indicators will be validated against behavioral observations.
Grantees: Michael Cherry, Joe Hediger
Institutions: Caesar Kleberg Wildlife Research Institute, Texas A&M University, University of Massachusetts Dartmouth, United States
Grant amount: $25,860
Grant type: Small grants
Focal species: White-tailed deer (Odocoileus virginianus)
Conservation status: Least concern
Disciplines: Physiology, animal welfare science
Research location: United States
Project summary
Wildlife are susceptible to both direct and indirect effects of thermal stress imposed by a warming climate. Direct effects include increased energetic costs to maintain a healthy body temperature and immune system impairment, while indirect effects include changes in food availability and increases in disease transmission. White-tailed deer (Odocoileus virginianus) in southern Texas are on the front lines of this environmental challenge. This project aims to assess the reliability of fecal tri-iodothyronine (T3) and fecal glucocorticoids (FGC) as non-invasive physiological metrics for monitoring the health of white-tailed deer. The use of T3 as an indicator of wildlife health and welfare is relatively novel, and the researchers will attempt to refine the use of these metrics through controlled experiments, correlating the T3 measurements with a more widely used indicator in FGC. Both physiological indicators will also be validated against behavioral observations of the same deer that are thought to reflect their emotional state.
Why we funded this project
The study findings will help in understanding how wild animals cope with increasing temperatures and the impact of thermal stress on their welfare and health. Notably, previous work has suggested that T3 measurements in ungulates are especially sensitive to thermal stress, and so comparing T3 with other indicators based on different physiological pathways, such as glucocorticoids, could help researchers to diagnose the relative significance of different environmental stressors an animal is facing. The project’s behavioral metrics are also crucial for realizing that potential. A secondary reason for our interest in this project is that it has near-term policy implications, potentially highlighting the value of preserving or promoting specific landscape features for the ecosystem service they offer, in the form of shade, to wild ungulates.
Photos
Validation and efficacy of faecal glucocorticoid metabolites as indicators of animal welfare
Grantee: Miriam Zemanova
Institutions: University of Fribourg, Animalfree Research, Oxford Centre for Animal Ethics
Project summary
Fecal glucocorticoid metabolites (FGM) may be a suitable non-invasive alternative to blood analysis in animal welfare studies. While there have been several reviews of fecal glucocorticoids, no systematic review of their validity as an animal welfare indicator has been done. Through a systematic review process, this project seeks to provide an evidence base for the efficacy of non-invasive measurement of stress levels in wild animals using fecal glucocorticoids. Evidence will be compiled from studies that have assessed the correlation between fecal glucocorticoids and at least one other credible animal welfare indicator or factor that may be assumed to lead to impaired welfare. The project also aims to compare the performances of blood and fecal samples to assess stress levels.
Grantee: Miriam Zemanova
Institution: University of Fribourg, Animalfree Research, Switzerland, Oxford Centre for Animal Ethics, United Kingdom
Grant amount: $28,500
Grant type: Small grants
Disciplines: Physiology, animal welfare science
Research location: Switzerland, United Kingdom
Project summary
One of the central components of the stress response is the production of glucocorticoids (GC). The measurement of glucocorticoid levels in blood serum is therefore often used in animal welfare studies. However, it is not always apparent how valuable these measurements are for understanding stress reactions and their relationship to animal welfare. Moreover, blood sampling causes discomfort and is impossible without restraint or immobilization, which can be harmful to the animal and distort the experimental results. Fecal glucocorticoid metabolites (FGM) may be a suitable non-invasive alternative to blood analysis. While there have been several reviews written on fecal glucocorticoids, no systematic review of their validity as an animal welfare indicator is currently available. Therefore, through a systematic review process, this project seeks to provide an evidence base for the efficacy of non-invasive measurement of stress levels in wild animals using fecal glucocorticoids. Evidence will be compiled from studies that have assessed the correlation between fecal glucocorticoids and at least one other credible animal welfare indicator or factor that may be assumed to lead to impaired welfare. The project also aims to compare the performances of blood and fecal samples to assess stress levels.
Why we funded this project
This study will review the evidence base for the validity and efficacy of non-invasively obtained glucocorticoid measurements and identify both challenges and best practices for working with fecal samples across multiple animal taxa. This is important because WAI is supporting multiple projects utilizing FGM as a physiological welfare indicator. Invasive measurements of stress, such as blood-based GCs, are disadvantageous because, without proper strategy and training, the stress induced by the sampling procedure can influence the measurement. Therefore, non-invasive measurement techniques are not only better for the animals, but may make the science less expensive and more reliable. Another reason we are supporting this study is that it will help to address a general need for better validation of the link between glucocorticoids and animal welfare, which is related to but conceptually distinct from physiological stress.
Photos
Characterization of fecal oxytocin and immunoglobulin A in lions (Panthera leo): Exploring a multi-biomarker approach in animal welfare research
Grantee: Paula Serres Corral
Institution: Universitat Autònoma de Barcelona
Project summary
This project will validate the measurement of oxytocin (OT) and secretory immunoglobulin A (IgA), markers of neuroendocrine and immune function, as biomarkers of wild animals’ welfare states. Both indicators have been measured in the saliva and urine of a limited set of wild mammalian species, but work on their analysis in fecal samples has been even more limited. This project will validate the measurement of OT and IgA in the feces of lions as a model for social carnivores, and evaluate their applicability as additional physiological indicators in wild animal welfare studies. The researchers will evaluate baseline levels for the species based on a small number of captive individuals and assess how these biomarkers are correlated with GCs and behavior.
Grantee: Paula Serres Corral
Institution: Universitat Autònoma de Barcelona, Spain
Grant amount: $25,385
Grant type: Small grants
Focal species: Lion (Panthera leo)
Conservation status: Vulnerable
Disciplines: Physiology, animal welfare science
Research location: Spain
Project summary
Glucocorticoids (GCs) remain the most common physiological indicators of stress and, by extension, of animal welfare. However, welfare means more than stress, and therefore there is a need to develop complementary biomarkers to expand our knowledge of animals’ overall welfare states, both positive and negative. This project will consider oxytocin (OT) and secretory immunoglobulin A (IgA), markers of neuroendocrine and immune function respectively, which have been proposed as potential indicators of positive affective states. So far, both indicators have been reliably measured in the saliva and urine of a limited set of wild mammalian species. However, previous work on their analysis in fecal samples has been even more limited. This project aims to validate the measurement of OT and IgA in feces of lions (Panthera leo) as a model for social carnivores and evaluate their applicability as additional physiological indicators in wildlife welfare studies. The researchers will evaluate baseline levels for the species based on a small number of captive individuals, and assess how these biomarkers are correlated with GCs and behavior.
Why we funded this project
With a multi-biomarker approach, these potential biomarkers, in combination with GCs, will enable a more robust interpretation of findings in welfare assessments. We are especially interested in the potential for these physiological indicators to support identification of positive welfare states in wild animals, considering the crucial role of oxytocin, for example, in social bonding. Although the project itself is limited to a small number of captive individuals, we expect that this project will represent a significant step towards validating these putative indicators of positive welfare thanks to the detailed behavioral monitoring that the captive environment allows, including a Quantitative Behavioral Assessment (QBA) approach.
Photos
Thermal imaging as a non-invasive welfare assessment tool for tracking the impact of environmental stressors across wild animal populations
Grantee: Ross MacLeod
Institutions: Liverpool John Moores University
Project summary
This project aims to test and validate a standardized multi-species approach to monitoring physiological stress in wild birds by using thermal imaging cameras to measure the animals’ body surface temperature, which could enable tracking of chronic stress in wild populations facing environmental stressors. Building on pilot work, the project will focus on wild bird populations to develop a standardized thermal imaging methodology capable of monitoring surface temperature of a wide range of wild animals. The methodology will be validated using bird communities visiting 54 standardized feeding and drinking stations spread across the UK, to quantify how changes in surface temperature are linked to starvation risk, predation risk, and human disturbance.
Grantee: Ross MacLeod
Institution: Liverpool John Moores University, United Kingdom
Grant amount: $29,810
Grant type: Small grants
Focal species: Wild birds
Conservation status: Least concern
Disciplines: Physiology, animal welfare science, population ecology, ornithology
Research location: United Kingdom
Project summary
This project aims to test and validate a standardized multi-species approach to monitoring physiological stress in wild birds by using thermal imaging cameras to measure the animals’ body surface temperature, which could enable tracking of chronic stress in wild populations facing different levels of environmental stressors. Building on pilot work, the project will focus on wild bird populations to develop a standardized thermal imaging methodology capable of monitoring surface temperature of a wide range of free-living wild animals. The methodology will be validated using bird communities visiting 54 standardized feeding and drinking stations spread across three urban-rural gradients in the UK, to quantify how changes in surface temperature are linked to starvation risk, predation risk, and human disturbance.
Why we funded this project
This approach to measuring wild animals’ physiological stress levels through thermal imaging analysis has great potential for scalable monitoring of large numbers of individuals and is usable for cross-species comparisons. We appreciated that this team was interested in addressing non-anthropogenic causes of suffering in starvation and predation, and in extending their method to other species that tend to be neglected (e.g., wild rodents). This work also relates to the project by Paul Jerem that we previously funded, creating a longer-term relationship between Wild Animal Initiative and project participants.
Find Ross’ other project, studying house sparrows, here.
Photos
Developing loop-mediated isothermal amplification (LAMP) assays for detecting pathogens in wild animal populations
Grantee: Cameron Semper
Institutions: University of Calgary, University of Lethbridge
Project summary
This project aims to develop Loop-mediated isothermal amplification (LAMP) assays for rapid, in situ detection of representative viral and bacterial pathogens, as well as parasitic worm infections in wild animals. This project will develop two methods for detecting viral and bacterial infections, respectively. The viral test will focus on viruses that have caused epidemics in wild frigatebird and sooty tern populations, while the bacterial test will focus on tick-borne illnesses and parasitic worms which infect deer mice. After developing the LAMP assays, the researchers will validate their potential contribution to monitoring wild animal welfare in a non-invasive manner by using them to test for pathogenic load in fecal samples from deer mice.
Grantee: Cameron Semper
Institution: University of Calgary, University of Lethbridge, Canada
Grant amount: $30,000
Grant type: Small grants
Focal species: Deer mice (Peromyscus sp.)
Conservation status: Least concern
Disciplines: Infectious disease, physiology, animal welfare science
Research location: Canada
Project summary
Loop-mediated isothermal amplification (LAMP) is a low-cost technique that amplifies specific DNA to levels that can enable visual detection. LAMP has been extensively applied as a point-of-care diagnostic tool for human health, but its application in wild animal populations remains underexplored. This project aims to develop LAMP assays for rapid, in situ detection of representative viral and bacterial pathogens as well as parasitic worm infections in wild animals. This project will develop two methods for detecting viral and bacterial infections, respectively. The viral test will focus on viruses that have caused epidemics in wild frigatebird and sooty tern populations, while the bacterial test will focus on tick-borne illnesses and parasitic worms which infect deer mice. After developing the LAMP assays, the researchers will validate their potential contribution to monitoring wild animal welfare in a non-invasive manner by using them to test for pathogenic load in fecal samples from deer mice.
Why we funded this project
This research will serve as a proof-of-concept for the applicability of LAMP for monitoring infectious disease, a key determinant of wild animal welfare. Additionally, the project is specifically targeting diseases that affect a large number of animals. LAMP is simple to perform, and results can be interpreted visually without the need for sophisticated equipment, reducing the cost in time and materials for assessing disease in wild animals. Because it can be carried out in the field, follow-up treatment or further study can be immediately given to the same animal.