Meet our grantees

Wild Animal Initiative funds academic research on high-priority questions in wild animal welfare.

The goal of our grants program is to fund research that deepens scientific knowledge of the welfare of wild animals in order to better understand how to improve the welfare of as many wild animals as possible, regardless of what causes the threats to their well-being.

We showcase our grantees and their projects here and continuously update this page as new projects are added.

Does diet mediate effects of sublethal parasitic infections on host welfare?

Grantee: Amanda Koltz

Institution: University of Texas at Austin

Project summary

This project will test how infection by parasitic worms (helminths) influences host welfare in white-footed deer mice by evaluating the relationship between parasite burden and host body condition, microbiome, and stress physiology, as well as behaviors associated with anxiety (negative welfare) and exploration (positive welfare). The researchers will experimentally manipulate parasite burden by intervening to apply anti-parasitic medication (Ivermectin) as a treatment for some mice who were already infected with helminths.

Grantee: Amanda Koltz

 

Institutions: University of Texas at Austin, United States

Grant amount: $167,237

 

Grant type: Challenge grant

Focal species: White-footed mouse (Peromyscus leucopus) and their helminth parasites

 

Conservation status: Least concern

Disciplines: Infectious disease, animal welfare science, animal behavior, physiology, community ecology

 

Research location: United States


Project summary

Parasite-mediated changes in host traits can have far-reaching ecological effects. Even sublethal infections affect hosts by increasing energetic costs and altering behavior, immunity, and physiology. Yet while many studies have investigated parasite effects on specific host traits, our understanding of how parasites influence overall individual welfare is limited, especially for wild animals. For example, parasites can drive changes in host diet and habitat use that reduce parasite exposure but not necessarily improve other metrics of host welfare. A holistic approach that captures different types of individual-level responses to parasitism is needed to advance our overall understanding of sublethal infections on host welfare. We propose to investigate how parasite burden is associated with individual-level host welfare using white-footed deer mice (Peromyscus leucopus) and their helminth parasites as a model system. Specifically, by experimentally removing gastrointestinal helminth parasites from P. leucopus, we will test how variation in parasite burden influences individual host body condition, diet and nutrition, microbiome, stress physiology, anxiety-like behavior, and exploratory behavior in forested ecosystems. P. leucopus has become the dominant small mammal species over the last 40 years in the northern Great Lakes region. It experiences sublethal infection by a range of helminth parasites and is a reservoir for several zoonotic pathogens, making its host-parasite dynamics highly relevant to the health of humans and other wildlife. By examining how infection levels relate to the diet, body functions, and behavior of P. leucopus, this study will advance our understanding of how non-lethal parasitic infections affect the welfare of an extremely widespread wild animal species.

Why we funded this project

We are excited to fund a study on wild mice, a highly numerous and neglected group, and especially one with such a welfare-friendly experimental approach — curing parasitic infections rather than causing them. The project also uses a holistic suite of physiological and behavioral indicators that should allow the researchers to disentangle overall welfare from narrow, mechanistic impacts of infection on the health and nutrition domains.


Read More

Empirical assessment of welfare in wild American mink and Eurasian otters: the effects of intra- and inter-specific population density

Grantees: Lauren A Harrington, Maria Diez Leon

Institutions: Oxford University

Project summary

This project seeks to determine whether the welfare of American mink is negatively impacted in the presence of high densities of Eurasian otters, whether both species’ welfare is compromised at relatively higher densities of conspecifics, and whether there is a seasonality to welfare impacts. The project will also assess whether behavioral time budget shifts in mink are associated with higher chronic stress levels as a proxy for negative impact on mink welfare. These questions will be addressed by measuring welfare through several different domains, including behavioral (exploratory behavior, vocalizations), physical (body condition, ectoparasite load), and physiological (telomere length, fecal glucocorticoid metabolites and hair cortisol) metrics.

Grantees: Lauren A. Harrington, Maria Diez Leon

 

Institutions: Oxford University, United Kingdom

Grant amount: $162,257

 

Grant type: Challenge grants

Focal species: American mink (Neovison vison), Eurasian otter (Lutra lutra)

 

Conservation status: Near threatened

Disciplines: Animal welfare science, community ecology, wildlife management

 

Research location: United Kingdom


Project summary

This project seeks to determine whether the welfare of American mink (Neovison vison) is negatively impacted in the presence of high densities of Eurasian otters (Lutra lutra), whether both species’ welfare is compromised at relatively higher densities of conspecifics, and whether there is a seasonality to welfare impacts. The project will also assess whether behavioral time budget shifts in mink are associated with higher chronic stress levels, as a proxy for negative impact on mink welfare. These questions will be addressed by measuring welfare through several different domains, including behavioral (exploratory behavior, vocalizations), physical (body condition, ectoparasite load), and physiological (telomere length, fecal glucocorticoid metabolites and hair cortisol) metrics. 

Why we funded this project

This project has the potential to contribute significant information to the understanding of intra-specific density-dependent welfare and to the understanding of network effects among predator-prey and competitor interactions of wild animals. Its unusually diverse set of welfare metrics will allow for cross-validation, strengthening both this project and other projects applying the same metrics. The investigators each have a strong background in animal welfare and have made efforts to better align their work with  Wild Animal Initiative’s priorities for wild animal welfare, which makes them good candidates to carry forward the validation of these welfare indicators (particularly telomere attrition, which is still relatively immature in its use as a welfare indicator).

Find Maria’s other project, studying European minks, here.


Photos


Read More

Impacts of land-use on social networks in mixed-species bird flocks, with implications for the short-term and long-term welfare of Himalayan birds

Grantee: Akshay Bharadwaj

Institution: Indian Institute of Science

Project summary

This project will use mist-netting and bird-banding, followed by standardized observations of behavior and body condition, to examine the relationship between individual-level social behavior, bird health, and survival within mixed-species bird flocks (MSFs) in Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India. Feather corticosterone level, ectoparasite load, and other morphological parameters will be used to measure the health of each banded individual. The researcher will also take advantage of a long-term bird-banding dataset, spanning 12 years, to examine the linkages between inter-individual differences in social behavior and the survival of each individual, comparing survival rates and reproductive success in primary and logged forest.

Grantee: Akshay Bharadwaj

 

Institutions: Indian Institute of Science, India

Grant amount: $15,000

 

Grant type: Small grants

Focal species: Multi-species birds

 

Conservation status: Least concern

Disciplines: Ornithology, physiology, community ecology, infections disease, population ecology

 

Research location: India


Project summary

This project will use mist-netting and bird-banding, followed by standardized observations of behavior and body condition, to examine the relationship between individual-level social behavior, bird health, and survival within mixed-species bird flocks (MSFs) in Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India. Feather corticosterone level, ectoparasite load, and other morphological parameters will be used to measure the health of each banded individual. The researcher will also take advantage of a long-term bird-banding dataset, spanning 12 years, to examine the linkages between inter-individual differences in social behavior and the survival of each individual, comparing survival rates and reproductive success in primary and logged forest. 

Why we funded this project

Understanding the importance of multi-species flocking behavior in birds is relevant to our research priority of understanding indirect welfare effects in ecological systems, which this project approaches in a cost-effective way. We were especially impressed by the quality of the proposal for this project, particularly as it is led by a beginning graduate student in India. Funding this project serves to increase the geographic diversity of our grantee community and therefore of the nascent field of wild animal welfare research.


Photos


Read More

Assessing the anthropogenic impacts, long-term health, and welfare of elasmobranch species within San Francisco Bay, California

Grantee: Meghan Holst

Institution: University of California, Davis

Project summary

The San Francisco Bay Estuary is used by individuals belonging to several elasmobranch populations during critical periods of their life history. But it is also dredged, used as a major harbor for ships, and fished, with sharks and their prey targeted. This project will measure stress physiology and blood contaminants to evaluate whether the health and welfare of elasmobranchs is threatened within San Francisco Bay. It will also use stable isotope analysis to evaluate the dietary needs and sensitivities of San Francisco Bay’s elasmobranch species to determine whether individuals are threatened with hunger due to fishing, and to map relationships within the ecosystem.

Grantee: Meghan Holst

 

Institution: University of California, Davis, United States

Grant amount: $19,200

 

Grant type: Small grants

Focal species: Shark (Selachimorpha sp.)

 

Conservation status: Near threatened

Disciplines: Animal welfare science, population ecology, community ecology, marine biology, ichthyology

 

Research location: United States


Project summary

Individuals belonging to several elasmobranch populations use the San Francisco Bay Estuary during critical periods of their life history. For example, the broadnose sevengill shark (Notorynchus cepedianus) is an apex predator that visits seasonally to pup. Pups then appear to reside in the estuary for several years before they join the adult population that migrates from Alaska to Baja, California. The San Francisco Bay also serves as a major harbor for container and cruise ships. To allow these large vessels to enter the bay, dredging occurs continuously within San Francisco Bay in the primary channel where many of the adult elasmobranchs also reside, potentially increasing contaminant exposure. Additionally, both commercial and recreational fishing occurs on shark species and their preferred prey, posing direct physiological impacts on elasmobranchs and constraints to their prey availability. Little has been done to evaluate potential unrecognized consequences of these activities on the health and welfare of elasmobranch species and the San Francisco Bay ecosystem. To address this gap in knowledge, this project will measure stress physiology and blood contaminants to evaluate whether the health and welfare of elasmobranchs is threatened within San Francisco Bay, and evaluate dietary needs of elasmobranch species within San Francisco Bay to determine whether individuals are threatened with hunger/starvation due to fishing of their preferred prey. Stable isotope analysis of the sharks and potential prey will also be used to more precisely identify their dietary needs and sensitivities, and ultimately map ecological relationships within the ecosystem.

Why we funded this project

We funded this project primarily because it addresses our interest in understanding the welfare implications of ecological system dynamics. The project also focuses on lifestage-specific ecological differences within the focal species, focusing on juveniles, which are the most numerous and often neglected. Additionally, the lead researcher is a PhD student who has an interest in wild animal welfare and has already demonstrated an aptitude for coordinating scientific research projects. The ability to write a compelling proposal at such an early research stage is very promising for their future career prospects.


Photos


Read More

The animal welfare of animal warfare: how inter-group interactions affect wild animal wellbeing

Grantee: Dominic Cram

Institution: University of Cambridge

Project summary

This project will investigate the welfare consequences of inter-group conflicts in wild Kalahari meerkats. It will use an established dataset of meerkat behavior, body weight, territory use, and reproduction, covering more than 500 inter-group interactions over 14 years. Identifying the short- and long-term welfare implications of inter-group interactions in meerkats will shed light on similar animal warfare in group-living insects, fish, birds, and mammals. Clarifying the circumstances that lead to the most harmful battles will provide a first step in understanding how their frequency could be reduced, which could limit the suffering they cause and enhance the welfare of group-living wild animals.

Grantee: Dominic Cram

 

Institution: University of Cambridge, United Kingdom

Grant amount: $29,965

 

Grant type: Small grants

Focal species: Meerkats (Suricata suricatta)

 

Conservation status: Least concern

Disciplines: Animal behavior, population ecology, community ecology

 

Research location: United Kingdom, South Africa


Project summary

Fierce group conflicts are not uniquely human, and many group-living animals regularly engage in “animal warfare.” These inter-group interactions play an influential role in natural population regulation, yet the health and well-being consequences for those involved remain unclear. Conservation and management interventions are currently developed with little understanding of how large-scale conflict affects welfare in wild animals. Given that anthropogenic habitat loss and climate change could increase the frequency of inter-group battles, there is an urgent need to investigate the welfare cost of animal warfare. This research program will investigate the welfare consequences of intergroup interactions and fights in wild Kalahari meerkats (Suricata suricatta). The project will take advantage of an established dataset of meerkat behavior, body weight, territory use, and reproduction, covering more than 500 inter-group interactions over 14 years. Identifying the short- and long-term welfare implications of inter-group interactions in meerkats will shed light on similar animal warfare in group-living insects, fish, birds, and mammals. Clarifying the circumstances that lead to the most harmful battles will provide a first step in understanding how their frequency could be reduced, which could limit the suffering they cause and enhance the welfare of group-living wild animals.

Why we funded this project

This project addresses a neglected topic related to our research priority of understanding conflicts of interest between wild animal groups. We especially appreciate this project’s holistic approach to welfare assessment, its attention to indirect effects (collateral damage) of animal conflicts in the form of costs to orphaned juveniles and the creation of a “landscape of fear,” and the openness of the investigators to considering interventions that could elevate wild animal welfare above its natural baseline.


Photos


Read More

Density-Dependent Welfare in Wild Bird Social Networks: Linking resource distributions with disease dynamics

Grantee: Joshua Firth

Institution: University of Oxford

Project summary

This project will investigate how various potential density-dependent drivers of welfare interact and influence net welfare in two species of tit. Population density is expected to be directly related to infectious disease transfer and increased competition, but also to covary with processes that are potentially beneficial to welfare. The study will use historical data to determine how the relationship between population density and individual welfare is shaped by infectious disease, body condition, and mortality risk. The investigators will then manipulate density experimentally to test model outputs and determine potential causal links.

Grantee: Josh Firth

 

Institution: University of Oxford, United Kingdom

Grant amount: $99,466

 

Grant type: Challenge grants

Focal species: Great tits (Parus major), blue tits (Cyanistes caeruleus)

 

Conservation status: Least concern

Disciplines: Animal behavior, community ecology, infectious disease, population ecology, ornithology, bio/eco-informatics, ecological modeling, animal welfare science

 

Research location: United Kingdom


Project summary

This project seeks to understand the interplay among various potential density-dependent drivers of positive and negative welfare impacts to determine net welfare related to aggregation (increased density) in wild birds (two species of tit). Infectious disease transfer and increased competition, both likely to reduce welfare, are expected to be directly related to population density. However, population density also covaries with processes that are potentially beneficial to welfare, such as congregation around areas that provide high nutrition, various social benefits, opportunities for increased cooperation, or access to social information. The study will use long-term datasets to empirically determine how the relationship between population density and individual welfare is shaped by infectious disease, including the density-dependent relationship with disease spread. Additionally, using historical data, the project will test how population density, mediated by social contact, environment, and disease, determines individuals’ body condition and mortality risk. Based on the results of this observational phase of the study, the investigators will then manipulate density experimentally, to test model outputs and determine potential causal links.

Why we funded this project 

This project brings two unique advantages. First, the investigators have access to a population that has been subject to intensive monitoring for decades, meaning that much of the relevant ecological context is known and there is historical data to analyze retrospectively. Secondly, in part due to this long-term monitoring, the birds are tagged and observed at feeding stations equipped with RFID tags/readers that allow for experimental manipulation of the density and identity of birds feeding at particular stations. By empirically testing density-dependent models of welfare, the project could provide an increased understanding of the interplay among population density, infectious disease, and various social and environmental characteristics, and in doing so, identify drivers of welfare in wild birds.


Photos


Read More