Meet our grantees
Wild Animal Initiative funds academic research on high-priority questions in wild animal welfare.
The goal of our grants program is to fund research that deepens scientific knowledge of the welfare of wild animals in order to better understand how to improve the welfare of as many wild animals as possible, regardless of what causes the threats to their well-being.
We showcase our grantees and their projects here and will be adding more in the coming weeks and months.
Improving the welfare of wild and captive animals with integrated in-situ and ex-situ behavioural monitoring
Grantee: Sarah Richdon
Institutions: Bristol Zoological Society
Project summary
This project will investigate the welfare impacts of translocating captive-bred white-clawed crayfish (Austropotamobius pallipes) into an existing wild population. Both resident and introduced individuals will be fitted with transponders and marked for behavioral monitoring. To evaluate welfare, the researchers will observe social interactions (e.g. aggressive interactions), behavioral diversity, and the animals’ use of their habitat. For example, emigration of native individuals from the focal habitat may be indicative of intraspecific competition intensified by the translocation. Body condition will also be scored as a metric of health and resource access.
Grantee: Sarah Richdon
Institutions: Bristol Zoological Society, United Kingdom
Grant amount: $30,000
Grant type: Seed grants
Focal species: White clawed crayfish (Austropotamobius pallipes)
Conservation status: Endangered
Disciplines: Animal welfare science, marine biology
Research location: United Kingdom
Project summary
This project will investigate the welfare impacts of translocating captive-bred white-clawed crayfish (Austropotamobius pallipes) into an existing wild population. Both resident and introduced individuals will be fitted with transponders and marked for behavioral monitoring. To evaluate welfare, the researchers will observe social interactions (e.g. aggressive interactions), behavioral diversity, and the animals’ use of their habitat. For example, emigration of native individuals from the focal habitat may be indicative of intraspecific competition intensified by the translocation. Body condition will also be scored as a metric of health and resource access.
Why we funded this project
We are excited to fund a project focused on the welfare of invertebrates, in this case an aquatic crustacean. The monitoring methods and some findings of this project may also be applicable to other aquatic taxa. Translocation is already a commonly used intervention in conservation, yet its welfare implications are poorly understood. By learning about these, translocation strategies could potentially be improved, and we might gain insights that could be applied to other welfare-motivated interventions.
A bird’s eye view to the five domains of welfare: a quantitative framework and proof-of-concept evaluation in a cetacean, Orcinus orca
Grantees: Saana Isojunno, Eve Jourdain
Institutions: University of St. Andrews, Norwegian Orca Survey
Project summary
This project will carry out body condition and welfare assessments for inshore-foraging killer whales in the northeast Atlantic. The researchers will use the Five Domains model to categorize likely factors influencing killer whale welfare and quantify some of those factors using aerial photography from drones. They will gather data on foraging time and feeding rates, group composition and surface behavior, body shape as a proxy for body condition and blubber reserves, and reproductive success. The researchers will then develop a proof-of-concept statistical model to infer latent motivational states beneath the observable data. The project will also utilize data from known cases of poor welfare to help define their welfare scale.
Grantees: Saana Isojunno and Eve Jourdain
Institutions: University of St. Andrews, Scotland, and Norwegian Orca Survey, Norway
Grant amount: $28,707
Grant type: Small grants
Focal species: Orca (Orcinus orca)
Conservation status: Data deficient
Disciplines: Animal welfare science, bio/eco-informatics, physiology, animal behavior, marine biology
Research location: Scotland, Norway
Project summary
This project will carry out body condition and welfare assessment for inshore-foraging killer whales (Orcinus orca) in the northeast Atlantic as an extension to ongoing research in Scotland and Norway. The researchers will use the Five Domains model to categorize likely factors influencing killer whale welfare, and then quantify some of those factors using aerial photography from drones. Specifically, the researchers intend to gather data on foraging time and feeding rates (nutrition), group composition and surface behavior (behavior), and body shape as a proxy for body condition and blubber reserves (health). Data will also be collected on reproductive success (e.g., calf loss). The researchers will then develop a proof-of-concept statistical model to infer latent motivational states (i.e., “true” welfare as a psychological state) beneath the observable data. The project will also utilize data from known cases of poor welfare (where individual social and nutritional needs are not met) to help define their welfare scale.
Why we funded this project
We funded this project because we see hidden state models as promising statistical tools for representing the relationship between disparate data types and welfare, and would like to see this project provide a proof of the concept. This project will also implement a cost-effective and non-invasive approach method based on photogrammetry to assess cetacean health and behavior. Finally, we wanted to fund this project because it spans multiple universities and a citizen science community, creating significant networking opportunities to promote welfare biology.
Photos
Assessing the anthropogenic impacts, long-term health, and welfare of elasmobranch species within San Francisco Bay, California
Grantee: Meghan Holst
Institution: University of California, Davis
Project summary
The San Francisco Bay Estuary is used by individuals belonging to several elasmobranch populations during critical periods of their life history. But it is also dredged, used as a major harbor for ships, and fished, with sharks and their prey targeted. This project will measure stress physiology and blood contaminants to evaluate whether the health and welfare of elasmobranchs is threatened within San Francisco Bay. It will also use stable isotope analysis to evaluate the dietary needs and sensitivities of San Francisco Bay’s elasmobranch species to determine whether individuals are threatened with hunger due to fishing, and to map relationships within the ecosystem.
Grantee: Meghan Holst
Institution: University of California, Davis, United States
Grant amount: $19,200
Grant type: Small grants
Focal species: Shark (Selachimorpha sp.)
Conservation status: Near threatened
Disciplines: Animal welfare science, population ecology, community ecology, marine biology, ichthyology
Research location: United States
Project summary
Individuals belonging to several elasmobranch populations use the San Francisco Bay Estuary during critical periods of their life history. For example, the broadnose sevengill shark (Notorynchus cepedianus) is an apex predator that visits seasonally to pup. Pups then appear to reside in the estuary for several years before they join the adult population that migrates from Alaska to Baja, California. The San Francisco Bay also serves as a major harbor for container and cruise ships. To allow these large vessels to enter the bay, dredging occurs continuously within San Francisco Bay in the primary channel where many of the adult elasmobranchs also reside, potentially increasing contaminant exposure. Additionally, both commercial and recreational fishing occurs on shark species and their preferred prey, posing direct physiological impacts on elasmobranchs and constraints to their prey availability. Little has been done to evaluate potential unrecognized consequences of these activities on the health and welfare of elasmobranch species and the San Francisco Bay ecosystem. To address this gap in knowledge, this project will measure stress physiology and blood contaminants to evaluate whether the health and welfare of elasmobranchs is threatened within San Francisco Bay, and evaluate dietary needs of elasmobranch species within San Francisco Bay to determine whether individuals are threatened with hunger/starvation due to fishing of their preferred prey. Stable isotope analysis of the sharks and potential prey will also be used to more precisely identify their dietary needs and sensitivities, and ultimately map ecological relationships within the ecosystem.
Why we funded this project
We funded this project primarily because it addresses our interest in understanding the welfare implications of ecological system dynamics. The project also focuses on lifestage-specific ecological differences within the focal species, focusing on juveniles, which are the most numerous and often neglected. Additionally, the lead researcher is a PhD student who has an interest in wild animal welfare and has already demonstrated an aptitude for coordinating scientific research projects. The ability to write a compelling proposal at such an early research stage is very promising for their future career prospects.