Meet our grantees
Wild Animal Initiative funds academic research on high-priority questions in wild animal welfare.
The goal of our grants program is to fund research that deepens scientific knowledge of the welfare of wild animals in order to better understand how to improve the welfare of as many wild animals as possible, regardless of what causes the threats to their well-being.
We showcase our grantees and their projects here and continuously update this page as new projects are added.
Integrating individual-level juvenile welfare in dynamic habitats across time and space
Grantee: Tom Luhring
Institution: Wichita State University, Texas State University, and Stephen F. Austin University
Project summary
The project will track four populations of juvenile lesser sirens in Eastern Texas within and across years. Sirens’ health is directly affected by their environment through the impacts of resource availability on body condition and growth rates. Furthermore, sirens show strong size-dependent and seasonal shifts in antagonistic behaviors, which lead to acute injuries. This project will use water-borne corticosterone release rates to investigate changes in stress physiology as a function of changes in the environment experienced by the individual (population density, drought severity index, water temperature, pH, conductivity) across time and space to understand coping capacity. This data will also be used to investigate the welfare impact of an established marking technique compared to a novel machine-learning approach.
Grantee: Tom Luhring
Institutions: Wichita State University, Texas State University, and Stephen F. Austin University, United States
Grant amount: $162,604
Grant type: Challenge grants
Focal species: Sirens (Siren intermedia)
Conservation status: Least concern
Disciplines: Herpetology, physiology, climate science
Research location: United States
Project summary
The project will track individual juvenile lesser sirens (Siren intermedia) within and across years for four populations in Eastern Texas. The lack of a terrestrial life-stage and severely limited overland dispersal ability means that hydrologically isolated pools function as closed populations, facilitating recaptures and simplifying demographic estimates. Siren health is directly impacted by the effects of the environment (e.g., drought conditions) through the impacts of resource availability on body condition and growth rates. Furthermore, sirens show strong size-dependent and seasonal shifts in antagonistic behaviors such as biting which lead to acute injuries.
Aquatic amphibians are especially well-suited for the collection of water-borne stress hormones (corticosterone), which offer the least invasive method of evaluating an integrated measure of corticosterone levels that are passively being released through the skin, gills, feces, and urine. This project will use water-borne corticosterone release rates to investigate changes in stress physiology as a function of changes in the environment experienced by the individual (population density, drought severity index, water temperature, pH, conductivity) across time and space to understand coping capacity. These data will also be used to investigate the welfare impact of an established marking technique compared to a novel approach based on pattern recognition by a machine-learning algorithm.
Why we funded this project
Juvenile mortality is especially high in amphibians, and amphibian welfare in general is a neglected subject. This project should provide proof of concept for a cost-effective approach for assessing welfare at both an individual and population level. The waterborne measurements have the potential to integrate corticosterone over a longer period of time, increasing its reliability as a welfare indicator. Finally, this project will test a novel, non-invasive approach to mark-recapture studies, which could facilitate much better individual-level welfare research for amphibians and other (especially aquatic) animals in the future.
Photos
Development of octopus mind in the wild: a behavioral, ecological and evolutionary investigation into sentience and emotional states in Octopus insularis juveniles
Grantee: Michaella Andrade
Institution: Federal University of ABC
Project summary
There is evidence that evolutionary pressures can cause behaviors with opposite meanings to develop opposite forms, the way a frown is the opposite of a smile. One way to understand the expression of emotion in animals may therefore be to identify pairs of behaviors that are opposites. In octopuses, which are increasingly being recognized as sentient, colors can be signals of emotional valence during conflict and other situations. Yet no study has tested whether octopuses have opposite pairs of color signals. This project will produce descriptions of evolutionary and behavioral patterns that reflect the emotional states and sentience of juvenile octopuses, which may contribute to the welfare of octopuses and other invertebrates.
Grantee: Michaella Andrade
Institution: Federal University of ABC, Brazil
Grant amount: $37,959
Grant type: Challenge grants
Focal species: Octopuses (Octopoda sp.)
Conservation status: Data deficient
Disciplines: Sentience, animal behavior
Research location: Brazil
Publications
Andrade M.P., et al. (2023). Assessing Negative Welfare Measures for Wild Invertebrates: The Case for Octopuses. Animals, 13(19), 3021. https://doi.org/10.3390/ani13193021
Project summary
Welfare refers to the quality of life of animals that possess sentient capacity and emotional states. Although the precursors of sentience were possibly present on the planet as early as 890 million years ago, the evolution of sentience is still poorly understood. However, cephalopods are increasingly being recognized as sentient, yet we do not know about this phenomenon in juvenile wild animals. In this sense, studies with wild animals can be beneficial for finding a wider range of ecological triggers and their relationship with behaviors.
There’s evidence that evolutionary pressures can cause behaviors with opposite meanings to eventually develop opposite forms, the way a frown is the opposite of a smile. One way to understand the expression of emotion in animals therefore may be to find pairs of behaviors that are opposites. In octopus, colors can be a signal of emotional valence during conflict and other contexts. Although researchers began to see this dimension in octopuses, no study has tested whether opposite pairs of color signals are present in octopuses. This project will produce descriptions of evolutionary and behavioral patterns that reflect the emotional states and sentience for juvenile octopuses, which may contribute to the welfare of octopuses and other invertebrates.
Why we funded this project
Although octopuses are widely assumed to be sentient at the adult stage, no studies that we are aware of have examined sentience at earlier life stages. As the vast majority of octopuses alive at any one time are juveniles, and octopuses have enormously high juvenile mortality, the question of when in their development sentience arises is particularly important. This project is also interesting because it will teach us about what the lives of juvenile octopuses are like and the extent to which welfare effects are mediated by personality traits.
Photos
Evaluating short- and long-term impacts of injury and illness on wild bird welfare
Grantee: Katie LaBarbera
Institution: San Francisco Bay Bird Observatory
Project summary
Surprisingly little is known about how illness and injury impact the welfare and survival of wild animals, as detecting and assessing injuries and tracking animals to determine their fates is challenging. Yet bird banding stations and wildlife rescues require this information to decide whether birds can be ethically released with long-term impairments. This project will use the San Francisco Bay Bird Observatory (SFBBO)’s long-term bird-banding dataset, which spans over 30 years and 100,000 captures, to investigate these questions in wild birds. Bird banding involves close examination of wild individuals who are frequently recaptured over time. With a high rate of recapture, the SFBBO tracks individuals over years, monitoring their injuries and health, and estimating survival.
Grantee: Katie LaBarbera
Institution: San Francisco Bay Bird Observatory, United States
Grant amount: $20,000
Grant type: Challenge grants
Focal species: Wild birds
Conservation status: Least concern
Disciplines: Wildlife rehabilitation, ornithology
Research location: United States
Project summary
There is surprisingly little known about how illness and injury impact the experience of wild animals. Studying such patterns can be limited by the challenges of detecting and assessing injuries and then following up to determine individual fate in wild animals. The San Francisco Bay Bird Observatory’s (SFBBO) long-term bird-banding dataset (>30 years and >100,000 captures) is well-suited to address these questions in wild birds.
Bird banding involves close examination of wild individuals, and individuals are frequently recaptured over time. The SFBBO has a high rate of recapture, which allows them to track individuals over years and to estimate survival, tracking the state of injuries and bird health over multiple years. Understanding how injury impacts individual welfare and survival is of both intellectual and practical value. Bird banding stations vary considerably in their criteria for deciding whether an injured bird should be released or taken to a wildlife rescue. Wildlife rescues must in turn decide whether birds can be ethically released with long-term impairments; for example, many rescues will euthanize rather than release one-legged songbirds. Banding stations and wildlife rescues need real data on wild birds' experiences and prognoses to inform such policies; otherwise, they risk enacting harm.
Why we funded this project
With thousands of wild animal rehabilitation centers in the US alone, this study could provide information that would allow wild animal rehab staff to make data-driven decisions about their bird patients. We think there may be potential to greatly grow interest in the wild animal welfare community via connections with wild animal rehabilitation groups, and this project could provide connections to that community. The project also advances one of our core goals — understanding what wild animals’ lives are like — using an existing and humanely acquired dataset, by providing data on injury rates, severity, and recovery processes. The data could be used to define a metric of “time spent suffering” for injured songbirds.
Photos
Determining the practical and statistical methods necessary for employing field-based metrics of welfare on wild, juvenile, birds
Grantee: Daniel Hanley
Institution: George Mason University
Project summary
Because welfare can vary between individuals and throughout the life of an animal, methods for measuring, assessing, and comparing welfare have been a barrier to our understanding of juvenile welfare. Initial investigations of welfare metrics are needed to estimate age-specific welfare in wild juvenile animals, to determine how they deviate from population-level estimates, and to extend methods and metrics to other systems. This study will examine welfare in free-living prothonotary warblers to establish standardized field and analytical procedures necessary to obtain age-specific animal welfare estimates. Prothonotary warblers are an ideal model system for studying age-specific welfare because they have well-defined life stages, face unique environmental risks, have variable survival, and nest within cavities, affording a degree of standardization and control.
Grantee: Daniel Hanley
Institution: George Mason University, United States
Grant amount: $60,000
Grant type: Challenge grants
Focal species: Prothonotary warbler (Protonotaria citrea)
Conservation status: Least concern
Disciplines: Ornithology, animal behavior, population ecology
Research location: United States
Project summary
The juvenile stage is where welfare conditions are likely the most variable and impactful on an individual’s growth and behavior. Unfortunately, methods for measuring, assessing, and comparing welfare have been a barrier to our understanding of juvenile welfare. Like other aspects of animal life history, welfare will vary between individuals and also over the lives of animals in an age-specific fashion. Thus, metrics such as welfare expectancy can inform us of the welfare that an organism is likely to experience, similar to how life expectancy can provide an estimate on how much longer an organism may live.
This study examines welfare in free-living juvenile songbirds to establish standardized field and analytical procedures necessary to obtain age-specific animal welfare estimates. Prothonotary warblers are an ideal model system for studying age-specific welfare because they have well-defined life stages (i.e., egg, nestling, fledgling, subadult, adult), face unique environmental risks (e.g., drought and flooding), and have variable survival. Furthermore, members of this species nest within cavities, which affords a degree of standardization and control necessary for an initial investigation of welfare metrics. Such initial investigations are crucial to estimate age-specific welfare on wild juvenile animals, to determine how they deviate from population-level welfare estimates, and to extend these methods and metrics to other systems.
Why we funded this project
We funded this project because it sought to explicitly quantify welfare across life stages, using multiple physiological, behavioral, and environmental/demographic indicators. Knowing how (and ideally why) average welfare differs over the course of life in a population could have important implications for interventions to improve their welfare (e.g., fertility control). We were also impressed with this PI because he engages numerous students in their lab and is relatively early in his own career, potentially allowing for pivot to focus more on wild animal welfare. He also demonstrated a good understanding of Wild Animal Initiative’s research on the welfare expectancy framework and sought to put the concepts into practice. That sort of theory-to-practice pipeline would represent a significant step for welfare biology as a research field.
Photos
Thermal imaging to investigate physiological state in altricial nestlings
Grantee: Paul Jerem
Institution: Tufts University
Project summary
Animal stress responses evolved to increase survival, in part by stimulating behaviors that reduce exposure to challenging situations. However, young birds who are entirely reliant on their parents (“altricial”) are incapable of acting to change their circumstances, potentially exposing them to the damaging effects of chronic stress. Such species are known to suppress aspects of their stress physiology during development. However, it remains unclear if other parts of the system remain active and could serve as useful indicators for efforts to improve early life welfare. This project seeks to investigate this possibility in juvenile house sparrows (Passer domesticus) using a novel, non-invasive method for inferring internal state — thermal imaging of body surface temperatures.
Grantee: Paul Jerem
Institution: Tufts University, United States
Grant amount: $37,780
Grant type: Challenge grants
Focal species: House sparrow (Passer domesticus)
Conservation status: Least concern
Disciplines: Physiology, ornithology
Research location: United States
Project summary
Animal stress responses evolved to increase survival, in part by stimulating behaviors that reduce exposure to challenging situations. However, young birds who are entirely reliant on their parents (“altricial”) are incapable of acting to change their circumstances, potentially exposing them to the damaging effects of chronic stress. Such species are known to suppress aspects of their stress physiology during development. However, it remains unclear if other parts of the system remain active and could serve as useful indicators for efforts to improve early life welfare. This project seeks to investigate this possibility in juvenile house sparrows (Passer domesticus) using a novel, non-invasive method for inferring internal state — thermal imaging of body surface temperatures.
Why we funded this project
We especially want to understand juvenile welfare, because in most species that is the most experienced life stage, and often the most vulnerable. However, developmental changes can make it difficult to compare welfare between juveniles and adults. This project will calibrate a non-invasive proxy of welfare that can be applied to both adult and altricial juvenile birds, enabling not only better welfare assessments, but more effective lifetime comparisons. A better understanding of the “shape” of lifetime welfare would in turn inform interventions that might disproportionately affect individuals of certain ages.
Photos
It takes guts to grow in the city: the role of the gut microbiome in the welfare of juvenile urban birds
Grantee: Pablo Capilla-Lasheras
Institution: University of Glasgow
Project summary
Approximately 30 million blue tits hatch every year in UK cities, but around 63% die as juveniles. One reason for this may be that juvenile birds in urban habitats tend to have low-quality diets, causing stunted growth and increased early-life mortality. Research suggests that gut microbiome composition may contain indicators of an animal’s welfare, but this has received little attention in a wild animal context. This project will combine telomere attrition, begging behavior, and other health metrics with a study of juvenile birds’ gut microbiomes to investigate how to improve the welfare of juvenile blue tits in urban areas. It will also test the potential for gut microbiome enrichment to improve the life experience of juvenile birds in urban habitats.
Grantee: Pablo Capilla-Lasheras
Institution: University of Glasgow, United Kingdom
Grant amount: $59,052
Grant type: Challenge grants
Focal species: Blue tits (Cyanistes caeruleus)
Conservation status: Least concern
Disciplines: Physiology, population ecology, animal welfare science, ornithology, animal behavior
Research location: United Kingdom
Publications
Reid, R., et al. (2024). The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proceedings of the Royal Society B, 291(2027). https://doi.org/10.1098/rspb.2024.0617
Project summary
Amongst the novel stressors that wildlife face in cities, shifts in diet are prevalent and have negative consequences for welfare, particularly in juveniles. Research clearly shows that juvenile birds in urban habitats have low-quality diets, causing stunted growth and increased early-life mortality. For example, in the UK alone, approximately 30 million blue tits hatch every year in cities, but around 63% of them die as juveniles. This project will study juvenile blue tits and investigate how to improve their welfare in urban areas using an integrative approach that will combine metrics of animal welfare with the study of gut microbiomes. Human and captive animal studies suggest that the gut microbiome composition may contain indicators of an animal’s welfare, but this has received little attention in a wild animal context. This study will combine a physiological welfare indicator (telomere attrition), a behavioral welfare indicator (begging behavior), and other health metrics with a study of juvenile birds’ gut microbiomes to link poor-quality urban diets, gut microbiome composition, and welfare. The project will also test a potential near-term dietary intervention (gut microbiome enrichment) to improve the life experience of juvenile birds growing in urban habitats.
Why we funded this project
Welfare is shaped by, and in turn influences, numerous aspects of an animal’s phenotype. Individual welfare indicators offer only limited insights, but combining indicators across multiple domains is thought to be extremely important for triangulating affective state, or “true” welfare. Because the gut microbiome represents a partially distinct domain, understanding how it relates to welfare could therefore strengthen all of our other indicators when they are used in combination. We were especially interested in this project due to the inclusion of an intervention experiment that could be implemented in the near future. Finally, this project will support an early-career researcher with an interest in wild animal welfare.
Photos
The impact of road noise on the welfare of free-living juvenile white-footed mice
Grantee: Michael Sheriff
Institution: University of Massachusetts Dartmouth
Project summary
This project will examine how road noise impacts the ability of juvenile white-footed mice in Massachusetts to respond to the threat of predation. Preliminary work has shown that experimental manipulation of road noise disrupts the foraging responses of (adult) small mammals to predation risk, possibly by masking their ability to perceive predators’ auditory cues. Perception of predation threat will be experimentally manipulated by auditory playback of owl noises at sites near and far from the highway, paired with controls at the same distances from the highway without auditory playback. Anxiety-related behaviors will be recorded in juveniles in an open field trap, and their feces will be studied to assess physiological stress and nutritional status.
Grantee: Michael Sheriff
Institution: University of Massachusetts Dartmouth, United States
Grant amount: $60,000
Grant type: Challenge grants
Focal species: White-footed mice (Peromyscus leucopus)
Conservation status: Least concern
Disciplines: Human-wildlife conflict, animal behavior, population ecology, mammalogy
Research location: United States
Project summary
This project will examine the impact of road noise on juvenile welfare in white-footed mice in Massachusetts. The project will focus on how road noise impacts the ability of juveniles to respond appropriately to the threat of predation (the most common cause of juvenile small mammal mortality). Preliminary work has shown that experimental manipulation of road noise (played at 62-65dB, which is equivalent to 100m into the forest from a major thoroughfare to Boston, MA) disrupts the normal foraging responses of (adult) small mammals to predation risk, possibly by masking their ability to perceive auditory cues of predators. Perception of predation threat will be experimentally manipulated by auditory playback of owl noises at sites near and far from the highway, paired with controls at the same distances from the highway but without auditory playback. Anxiety-related behaviors will be recorded in juveniles in an open field trap (which they voluntarily enter for feed), and their feces will be studied to assess physiological stress and nutritional status.
Why we funded this project
Road noise has dramatically increased and is potentially a major anthropogenic threat to wild animal welfare, and one which might be easily ameliorated through policy changes (e.g., improved sound barriers). This project is especially interesting because it focuses on a less obvious effect of road noise, potentially increasing the risk of predation by masking predator cues. This becomes even more interesting in the context of growing literature on the “ecology of fear,” sublethal effects of predators on prey behavior. If road noise makes prey unaware of risks, it could actually reduce their chronic stress despite exposing them to greater risk of death. We are excited for this project to explore those issues, although we are prepared for a complex result. Additionally, we wanted to support this PI because of their strong record of engaging students in their research and influencing their career trajectories.
Photos
The impact of anthropogenic stressors on the affective state of juvenile Murray cod
Grantee: Rafael Freire
Institution: Charles Sturt University
Project summary
Many freshwater fish populations have severely declined as a result of human-caused changes in their environment. Population decline often results from an increased mortality rate experienced on the individual level, with likely implications for the welfare of individuals living through a period of population decline. This study will examine how differences in water quality and the presence of potential predators affect a behavioral indicator of welfare — judgment bias — in juvenile Murray cod (Maccullochella peelii). In the future, data about how juvenile fish respond to these factors could guide interventions for helping juvenile fish survive to adulthood in the wild.
Grantee: Rafael Freire
Institution: Charles Sturt University, Australia
Grant amount: $21,500
Grant type: Challenge grants
Focal species: Murray cod (Maccullochella peelii)
Conservation status: Critically endangered
Disciplines: Animal behavior, sentience, ichthyology
Research location: Australia
Publications
Freire, R. and Nicole, C.J. (2024). A novel method to measure the impact of water quality on judgement bias in wild juvenile fish. Global Ecology and Conservation, 54. https://doi.org/10.1016/j.gecco.2024.e03086
Project summary
Many freshwater fish populations have severely declined as a result of human-caused changes in their environment. Population decline often results from an increased mortality rate experienced on the individual level, with likely implications for the welfare of individuals living through a period of population decline. This study will examine how differences in water quality and the presence of potential predators affect a behavioral indicator of welfare — judgment bias — in juvenile Murray cod (Maccullochella peelii). In the future, data about how juvenile fish respond to these factors could guide interventions for helping juvenile fish survive to adulthood in the wild.
Why we funded this project
The vast majority of wild fish do not survive to adulthood, but little is known about their welfare as juveniles and how that might affect their survival. This project will address that by investigating the effects of multiple aspects of habitat quality on the affective state of juvenile Murray cod. An additional factor in us funding this project was that it would be integrated into ongoing fisheries policy work by the PI, which should ultimately lead to advice for the regional government.
Photos
Density-Dependent Welfare in Wild Bird Social Networks: Linking resource distributions with disease dynamics
Grantee: Joshua Firth
Institution: University of Oxford
Project summary
This project will investigate how various potential density-dependent drivers of welfare interact and influence net welfare in two species of tit. Population density is expected to be directly related to infectious disease transfer and increased competition, but also to covary with processes that are potentially beneficial to welfare. The study will use historical data to determine how the relationship between population density and individual welfare is shaped by infectious disease, body condition, and mortality risk. The investigators will then manipulate density experimentally to test model outputs and determine potential causal links.
Grantee: Josh Firth
Institution: University of Oxford, United Kingdom
Grant amount: $99,466
Grant type: Challenge grants
Focal species: Great tits (Parus major), blue tits (Cyanistes caeruleus)
Conservation status: Least concern
Disciplines: Animal behavior, community ecology, infectious disease, population ecology, ornithology, bio/eco-informatics, ecological modeling, animal welfare science
Research location: United Kingdom
Project summary
This project seeks to understand the interplay among various potential density-dependent drivers of positive and negative welfare impacts to determine net welfare related to aggregation (increased density) in wild birds (two species of tit). Infectious disease transfer and increased competition, both likely to reduce welfare, are expected to be directly related to population density. However, population density also covaries with processes that are potentially beneficial to welfare, such as congregation around areas that provide high nutrition, various social benefits, opportunities for increased cooperation, or access to social information. The study will use long-term datasets to empirically determine how the relationship between population density and individual welfare is shaped by infectious disease, including the density-dependent relationship with disease spread. Additionally, using historical data, the project will test how population density, mediated by social contact, environment, and disease, determines individuals’ body condition and mortality risk. Based on the results of this observational phase of the study, the investigators will then manipulate density experimentally, to test model outputs and determine potential causal links.
Why we funded this project
This project brings two unique advantages. First, the investigators have access to a population that has been subject to intensive monitoring for decades, meaning that much of the relevant ecological context is known and there is historical data to analyze retrospectively. Secondly, in part due to this long-term monitoring, the birds are tagged and observed at feeding stations equipped with RFID tags/readers that allow for experimental manipulation of the density and identity of birds feeding at particular stations. By empirically testing density-dependent models of welfare, the project could provide an increased understanding of the interplay among population density, infectious disease, and various social and environmental characteristics, and in doing so, identify drivers of welfare in wild birds.
Photos
Improving the welfare of farmland invertebrates
Grantee: Dr. Ruth Feber
Institution: University of Oxford
Project summary
In Lepidoptera (butterflies and moths), larvae are much more abundant and less mobile than adults. Larvae are therefore particularly vulnerable to negative stimuli, including starvation and disease. This project will use lepidopteran larvae as a model for auditing the welfare impact of agricultural activities on invertebrates. Juvenile stages of Lepidoptera are exposed to agricultural practices that have the potential to affect their welfare. To quantify these impacts, the study will extend the Quality Adjusted Life Year (QALY) methodology to take into account the number of individuals affected by a specified action.
Grantee: Dr. Ruth Feber
Institution: Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Department of Zoology, University of Oxford, United Kingdom
Grant amount: $58,448
Grant type: Challenge grant
Focal species: Butterflies (Rhopalocera sp.)
Conservation status: Near threatened
Disciplines: Entomology, population ecology, physiology
Research location: United Kingdom
Project summary
Invertebrates, particularly insects, often have complex life histories. Juveniles (which make up the overwhelming majority of invertebrate numbers) may experience a range of different life quality outcomes. In Lepidoptera (butterflies and moths), for example, adults are the most visible stage, but the much more abundant larvae are less mobile than adults and are particularly vulnerable to negative stimuli including starvation and disease.
This project will use lepidopteran larvae as a model for auditing the welfare impact of agricultural activities on invertebrates. Juvenile stages of Lepidoptera tend to comprise the largest proportion of the total lifespan in temperate regions and, as juveniles, they are exposed to a wide range of agricultural practices that have the potential to affect their welfare. Lepidoptera are also among the better-studied invertebrates, with published data on the ecology, life histories, and survivorship of some species. This knowledge will be used to help inform welfare impact assessments.
The study will adapt the Quality Adjusted Life Year (QALY) methodology to quantify the welfare impacts of agriculture, which has recently been adapted by Teng et al. (2018) to compare the impact of diseases of domestic animals with a Welfare Adjusted Life Year (WALY). This project aims to extend the QALY to take into account the number of individuals affected by a specified action.
Why we funded this project
Farms take up nearly half of the world’s habitable land, but there is a lack of research into how agricultural management practices might impact wild animals, especially invertebrates. In order to improve welfare for invertebrates, we first need to understand how to measure welfare. This project will explore a model to quantify wild insect health and well-being. We were especially attracted to this project because it will repurpose existing data, allowing the research objectives to be accomplished more cheaply and with less animal suffering than might otherwise be required. We were also excited by the PI’s interest in quantifying welfare using a QALY-like framework, which fits perfectly with our utilitarian approach and could lead to actionable policy recommendations.